О Продавце
Collectively, our study suggests that genetic variants of SARS-CoV-2 could be used to replicate specific features of COVID-19 for the testing of potential vaccines or therapeutics.With regards to cardiovascular health, frequent consumption of fried foods is discouraged, despite a lack of clear evidence of a direct link between eating oxidative frying oil (OFO) and cardiovascular diseases. In this study, male Sprague Dawley rats were exposed to diets containing fresh or fried soybean oil (groups C and O, respectively) from in utero to 28 weeks of age. A subset of rats in group O was supplemented with vitamin E (500 mg/kg of DL-α-tocopherol acetate; group OE) from 8 week of age onward to mitigate oxidative stress associated with OFO ingestion. Echocardiography, cardiac histology and indices associated with ATP production and calcium cycling in cardiac tissues were measured. Compared to group C, there was cardiac hypertrophy, fibrosis and diastolic dysfunction, in groups O and OE, with no differences between the latter two groups. Although cardiac mRNA levels of genes associated with mitochondrial biogenesis and function were increased, there were lower ATP concentrations and higher transcripts of uncoupling proteins in groups O and OE than in group C. OT-82 inhibitor In addition, decreases in phosphorylation of phospholamban and Ca2+/calmodulin-dependent protein kinase II activity, plus increased protein phosphatase 2A activity in groups O and OE, implied calcium cycling required for cardiac function was disrupted by OFO consumption. We concluded that long-term OFO exposure resulted in cardiac hypertrophy, fibrosis and diastolic dysfunction that was not mitigated by vitamin E supplementation. Underlying mechanisms were partly attributed to inefficient energy production via uncoupled phosphorylation and disrupted calcium cycling.Autoantibodies targeting the GluA3 subunit of AMPA receptors (AMPARs) have been found in patients with Rasmussen's encephalitis and different types of epilepsy and were associated with the presence of learning and attention deficits. Our group recently identified the presence of anti-GluA3 immunoglobulin G (IgG) in about 25% of patients with frontotemporal dementia (FTD), thus suggesting a novel pathogenetic role also in chronic neurodegenerative diseases. However, the in vivo behavioral, molecular and morphological effects induced these antibodies are still unexplored. We injected anti-GluA3 IgG purified from the serum of FTD patients, or control IgG, in mice by intracerebroventricular infusion. Biochemical analyses showed a reduction of synaptic levels of GluA3-containing AMPARs in the prefrontal cortex (PFC), and not in the hippocampus. Accordingly, animals injected with anti-GluA3 IgG showed significant changes in recognition memory and impairments in social behavior and in social cognitive functions. As visualized by confocal imaging, functional outcomes were paralleled by profound alterations of dendritic spine morphology in the PFC. All observed behavioral, molecular and morphological alterations were transient and not detected 10-14 days from anti-GluA3 IgG injection. Overall, our in vivo preclinical data provide novel insights into autoimmune encephalitis associated with anti-GluA3 IgG and indicate an additional pathological mechanism affecting the excitatory synapses in FTD patients carrying anti-GluA3 IgG that could contribute to clinical symptoms. Greater brain network integrity may associate with physically active lifestyles. Three resting state networks may provide unique insights into known physical activity-mediated brain health benefits the default mode network (involved with self-monitoring), the salience network (involved in orienting oneself to salient external and internal stimuli), and the central executive network (responsible for higher level cognitive task). The current study explored relationships between system-wide neural network integrity measured by functional magnetic resonance imaging and objectively-measured physical activity. We hypothesize connectivity patterns as measured by fMRI networks will relate to actigraphy markers such that 1) there will be higher connectivity within the central executive network in more physically active individuals, and 2) there will be higher connectivity within the default mode network and salience network in those with higher levels of physical activity. Eighteen non-demented older adults with oadence and moderate-to-vigorous physical activity) which will be useful for interventions aimed at improving the integrity of underlying neural networks.Motor neuron degeneration, denervation, neuromuscular junction (NMJ) fragmentation and loss of motor units (MUs), play a key-role in the development of sarcopenia. The aim of the present study was to investigate the beneficial effects of regular practice of dancing in physically active elders on concentration of C-terminal Agrin fragment (CAF), a marker of NMJ instability, muscle mass, strength, and physical performance in a group of 16 recreationally active older dancers (AOD; 70.1 ± 3.4 yr) compared to 15 age-matched sedentary peers (OS; 70.9 ± 6.2 yr). Circulating concentration of CAF was measured in serum, while morphology of the vastus lateralis and multifidus muscles was assessed by ultrasound imaging. In addition, the participants underwent two functional performance tests, the Timed Up and Go (TUG) and the 10-meter walk test (10-MWT), a lower and upper limb isometric strength test, a static and a dynamic balance test. Although no statistically significant differences were detected for both muscle morphology and isometric strength, higher CAF concentration (20%, p less then 0.01) was found in OS. AOD showed a better performance in TUG (22%, p less then 0.001), 10-MWT (17%, p less then 0.001) and dynamic balance (25%, p less then 0.01) than OS. Notably, CAF concentration correlated with dynamic balance performance (r = 0.3711, p less then 0.05). Our results provide evidence that the regular practice of dancing in older age, together with non-structured light aerobic physical activities, is associated to lower CAF concentration and improved walking and balance performance. Our findings also suggest that NMJ instability, as indicated by elevated CAF serum concentration, seems to precede the loss of muscle size and alterations in muscle architecture normally associated with sarcopenia.